教案可以为教师提供备课的框架和蓝图,教师可以通过教案来安排学生的学习活动,下面是大黑猫文档网小编为您分享的小学六年级比的教案7篇,感谢您的参阅。
小学六年级比的教案篇1
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。
教学重点难点:
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备:
课件。
教学过程:
一、复习旧知,导入新课
1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?
2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)
二、教学过程
活动一:创设情境,引出新知
1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?
2、课件出示情境,引导学生观察
师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:
45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
3、师:根据这两个条件,你能提出什么问题?
生提问,师选择板书。
(1)、冰的体积是原来水的体积的百分之几?
(2)、原来水的.体积是冰的体积的百分之几?
(3)、冰的体积比原来水的体积增加百分之几?
4、在这些问题中,我们能解决哪些问题?
师生共同解决,并将解决的问题擦掉。
活动二:理解“增加百分之几”。
1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?
2、学生用自己的方式理解“增加百分之几”的意思。
3、全班汇报,由口头理解的不清晰,引出线段草图。
4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?
通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。
5、列式计算,数形结合,说出两个列式的含义
6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。
可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。
三、训练巩固
1、根据问句,说出谁和谁比,谁是单位“1”的量。
①女生人数是男生人数的百分之几?
②梨的质量是苹果质量的百分之几?
③降价了百分之几?
④增产了百分之几?
2、消费宝典
电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)
(引导学生先理解“降低百分之几”再列式计算。)
3、建设新农村
选一选:
光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?
(1)、(121-66)÷121
(2)、 66÷121
(3)、 66÷(121-66)
(让学生说出选择的依据。)
四、课堂小结
通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。
小学六年级比的教案篇2
教学目标
1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
教学重点
本金、利息、利率的含义。
教学难点
计算定期存款的利息。
教学过程
一、师生交流
课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。
师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。
让学生汇报调查的情况,并出示课本的'银行存款利率表。
师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。
二、探讨新知
1、计算公式
师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。
利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。
请学生讨论利息的算法,老师适当的提示。
板书 利息=本金×利率×时间
全班齐读公式。
师:要求利息就必须要知道什么?
2、计算利息
师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。
出示题目:
笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?
淘气说:我存三年期的300元,到其实有多少利息? 师:笑笑存的本金是多少?存款的时间是多长?利率是多少?
怎样算?淘气呢?
学生回答后,师板书。
笑笑得到的利息:300×2.52%×1=7.56(元)
淘气得到的利息:300×3.69%×1=33.21(元)
师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。
师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。
三、巩固练习
1、李老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算。到期时,李老师的本金和利息共有多少元?
先让学生自己计算,在全班讲评。
2、光明小学为400名学生投保“平安保险”,保险金额每人5000元,保险期限一年。按年保险费率0.4%计算,全校共应付保险费多少元
先提醒学生说出保险金额、年保险费率的含义,再让学生计算。
四、课后总结
1、同学们现在已经知道了把压岁钱存到银行可以获得利息,而存款方式有好几种,今后打算怎么处置自己的压岁钱呢?
如果把它存到银行,该怎样存呢?
建议学生课后亲自到银行存一次钱。
2、这节课你学到了哪些知识?
五、布置作业
小学六年级比的教案篇3
教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的`话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
小学六年级比的教案篇4
教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1、理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2、在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3、初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、 复习引入
1、师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2、你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3、你还记得分数的基本性质吗?举例说明。
设计意图
影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1、师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2、学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3、根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
设计意图
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1、教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2、集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3、全班验证。
16:20=(16○□):(20○□)。
4、完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)
5、质疑辨析,深化认识。
设计意图
基于猜想的.学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1、引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2、从下列各比中找出最简整数比,并简述理由。
3:4; 18:12; 19:10; ; 0、75:2。
(二)初步应用。
1、化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=( ):( )。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2、化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像 : 和0、75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3、归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4、方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5、尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16; 48:40; 0、15:0、3;
设计意图
新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1、教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0、12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2、教材第53页第6题。
(二)拓展练习(ppt课件出示)
学生口答完成。
1、2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。
2、六(1)班男生人数是女生人数的1、2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )
?设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
小学六年级比的教案篇5
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。
⑴、梨的.重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔x元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果x千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
小学六年级比的教案篇6
一、创设情境,导入新课
1、提问
师:除法、分数和比之间有什么联系?
2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?
3.导入课题:
我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)
二、学习新课
1.教学例3比的基本性质。
(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?
(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.
(4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?
2.教学例4应用比的基本性质化简比。
我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。
出示:把下面各比化成最简单的整数比
(1)12:18 (2) (3)1.8:0.09
(1)让学生试做第(1)题
师:你是怎么做的?6和12、18有着怎样的关系?
引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。
(2)化简 (2)
师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?
(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。
(4)化简(3)1.8:0.09
师:想一想如何化简小数比呢?
让学生独立在书上化简,指名板演
师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?
三、巩固练习
1.练一练,填完整
2.做练习十三第5-8题。
3.补充练习
选择
1.1千米∶20千米=( )
(1)1∶20 (2)1000∶20 (3)5∶1
2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )
(1)20∶21 (2)21∶20 (3)7∶10
四、课堂小结
师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
小学六年级比的教案篇7
教学内容:
教科书第50、51页的内容,做一做,练习十一第4—6题。
教学目标:
1、掌握比的基本性质,能根据比的基本性质化简比。
2、联系商不变的性质和分数的基本性质迁移到比的基本性质。
教学重点:
理解比的基本性质。
教学难点:
能应用比的基本性质化简比。
教学过程:
一、激趣定标
1、20÷5=(20×10)÷( × )=( )
2、3a72372b55c07ece8e9c2bd885c54a3a、jpg
想一想:什么叫商不变的规律?什么叫分数的基本性质?
3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。
二、自学互动,适时点拨
活动一 比的基本性质
学习方式:小组合作、汇报交流
学习任务
1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。
6:8=6÷8=6/8=3/4 12:16=12÷16=12/16=3/4
2、观察比较,发现规律。
(1)利用比和除法的关系来研究比中的规律。(商不变的规律)
(2)利用比和分数的关系来研究比中的规律。
3、归纳总结,概括规律。
(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(2)追问:这里“相同的数”为什么要强调0除外呢?
活动二 化简比
学习方式:尝试训练、汇报交流
学习任务
1、认识最简单的整数比。
(1)提问:谁知道什么样的比可以称作是最简单的整数比?
(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
(3)指出几个最简单的整数比。
2、运用性质,掌握化简比的方法。
(1)分别写出这两面联合国国旗长和宽的比。
(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)
(3)尝试化简。
(4)汇报交流:只要把比的前、后项除以它们的公因数。
(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的大小不同,形状相同。
(6)出示例题,组织交流
①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4
②前后项先化成整数,再化简:0、75:2=(0、75×100):(2×100)=75:200=3:8
③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4
(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。
三、达标测评
1、完成课本第51页的“做一做”,集体订正。
2、完成课本第52页练习十一的第2、4、5、6题。
四、课堂小结
这节课我们学习了什么?你有什么收获?